Entradas

S.A.D. (Subwoofer Array Designer) explicado a fondo (parte 2)

Y vamos con la segunda parte sobre la hoja de Excel para hacer arreglos de subgraves de Merlijn van Veen.

Nos habíamos quedado en la primera parte del artículo en la opción de Microphone Setup Selection, así que continuaremos el artículo desde allí.

Respuesta de los micrófonos (Level & Phase)

Habíamos visto anteriormente cómo configurar el posicionamiento de los micrófonos. Para que el calculador nos muestre su respuesta (de nivel y de fase relativa) tenemos un cuadro llamado «Level & Phase»

level_phaseDesde este menú podemos seleccionar los datos de qué micrófono se muestran en los recuadros Level (individual) y Phase (Individual).Para ello,  elegimos el número de micrófono del que queremos ver los datos en el cuadro «mic».

Las opciones «normalize» y «tracking» afectan a la respuesta de fase mostrada en el cuadro «Phase individual». Al normalizar el trazo elegido ajusta su respuesta al eje de 0º y muestra las diferencias temporales con el resto.

Level (Summed)

También tenemos un cuadro donde el calculador nos muestra el nivel sumadode todos los altavoces en cada posición de micro.

Para este gráfico tenemos un cuadro de control donde elegir qué posiciones queremos que nos muestre. También podemos normalizar el gráfico a la posición de micro que queramos. Si hacemos esto, lo que sucederá es que la gráfica que corresponda al micrófono normalizado estará en la posición de 0dB y el resto estará representado a partir de esta referencia.

level_summed

Arriba tenemos la gráfica normalizada (con las respuestas alrededor de 0dB) y abajo sin normalizar, con las respuestas a 12dB que es la suma que generan 4 subgraves.

Input & Output Data (Configuración de los altavoces)

En la ventana «Input Data» es donde seleccionamos el número de altavoces que va a tener nuestro arreglo, concretamente en el campo «Speakers». El número máximo es 12.

Justo a la derecha del campo «Speakers» nos aparecerá el dato «block level». Este campo nos indica la suma total que genera el número desubgraves que hayamos elegido, teniendo en cuenta que 1 subgrave toma el valor de referencia de 0dB, 2 subgraves son 6dB, 4 subgraves son 12dB, etc.

En esta misma tabla podemos configurar aspectos como el encendido o apagado de los subs, su posición, nivel, polaridad, rotación o delay.

En «Output Data» vemos los datos que se están tomando para mostrar la información de toda la hoja de Excel. Estos datos aparecen automáticamente tras configurar el «Input Data».

input_output

Polar plot (Diagrama polar)

La hoja de Excel también nos permite visualizar en forma de diagrama polar la respuesta de nuestro arreglo de subgraves.

Es muy interesante, porque nos permite visualizar de manera simultánea cómo se va a comportar el arreglo a distintas frecuencias. Por ejemplo, podemos ver muchas diferencias entre un arreglo de gradiente y un arreglo end-fired en esta gráfica.

Teóricamente, el arreglo End-Fired produce la máxima suma en la parte delantera del arreglo, y nos va generar una respuesta cardioide en la frecuencia para la que hemos hecho el arreglo (separación de 1/4 de longitud de onda). Esta cancelación tiene un ancho de banda estrecho.

Sin embargo, el arreglo gradiente va a conseguir una cancelación en la parte trasera con aproximadamente un ancho de banda de 1 octava y media (mucha más cancelación que el End-Fired). Sin embargo, no va generar tanta suma en la parte frontal.

Esto, gráficamente, lo podemos visualizar muy fácil en el diagrama polar del S.A.D:

Con el diagrama polar, podemos comparar a simple vista el resultado teórico de un arreglo End-Fired y un arreglo de Gradiente.

Filters & Info (Filtros e Información)

Aunque los he dejado para el final, el calculador también permite añadir filtros HPF o LPF a nuestros subgraves. Tan sencillo como elegir las frecuencias del HPF o LPF y el número de orden del filtro. Si no queremos filtros, bastará con dejar los valores 0 en el HPF y 20000 en el LPF.

filtro_end_fired

Aquí he aplicado filtros LPF y HPF en un arreglo End-Fired. Además, en el gráfico se muestra el micro que está delante, a 0º del eje (en rojo) y el micrófono trasero a 180º. Por eso el trazo negro muestra una cancelación en 85Hz

Y hay otro cuadro a la izquierda de este y un poco más abajo que nos muestra información importante sobre nuestro arreglo. Se trata del cuadro Info, que se corresponde con los triángulos de colores que se pueden ver en la imagen anterior, y en el que de un vistazo podemos ver lo siguiente:

infoArray length: Longitud del arreglo en metros.

1st cancel: A qué frecuencia, en herzios, tendremos la primera cancelación.

Pref filters: Frecuencias de corte recomendadas para nuestros filtros.

Crit frequency: Frecuencia crítica a partir de la cual tenemos el mismo nivel en la parte delantera y en la trasera del arreglo.

BW /F2B: Ancho de banda del arreglo y diferencia máxima de nivel entre la parte delantera y la trasera.

Exportando los arreglos de subgraves a Mapp XT

Por último, Merlijn ha tenido el detalle de facilitar la importación de los arreglos de subgraves hechos con su calculador al programa de Meyer Sound Mapp XT.

Para ello, simplemente debemos elegir en el cuadro que aparece abajo a la izquierda el modelo de subgraves que queremos utilizar en Mapp y la orientación tanto de los altavoces como de los micrófonos. Le damos a exportar y automáticamente, en el directorio que queramos, nos generará un archivo *.xml que podremos abrir con Mapp XT.

exportar_mapp

La exportación a Mapp XT es realmente sencilla…

Y con esto doy por finalizada la explicación sobre este gran calculador.
Recuerda que puedes descargarlo desde la web de Merlijn van Veen de forma gratuita.

S.A.D. (Subwoofer Array Designer) explicado a fondo (parte 1)

En el artículo «3 hojas de excel que todo técnico de sonido debería tener», una de las que nombrábamos era el calculador de arreglos de subgraves (Subwoofer Array Designer, S.A.D, de Merlijn van Veen). Se puede descargar de forma gratuita desde su web.

Se trata de una herramienta muy potente para diseñar arreglos de subgraves, ya sean arreglos en arco físico, en arco virtual, en gradiente o end-fired.

Vamos a tratar de explicar la herramienta por encima, para poder manejarnos con ella y empezar a diseñar arreglos y comprobar su respuesta.

Nada más abrir la hoja de Excel, tenemos todos estos campos a la vista:

Subwoofer Array Designer

Vista global del Subwoofer Array Designer

Veamos poco a poco qué significan estos campos.

1.Speaker Setup Selection

Arriba a la izquierda nos encontramos con el campo «Speaker setup selection». En este campo es donde decidimos qué tipo de arreglo queremos hacer.

Merlijn nos deja elegir entre un arreglo en arco físico (Physical hor.array), un arco electrónico mediante la aplicación de delays (Delayed hor. array), un arreglo End-fired y un arreglo de gradiente.

Para los arcos, recomienda al menos 6 subgraves, aunque se puede hacer con menos. Para el End-fired entre 2 y 4 subgraves y para el gradiente únicamente dos subgraves. Estas limitaciones son en el plano horizontal, ya que siempre podríamos apilar subgraves en vertical encima del arreglo si necesitamos utilizar más cajas.

Para elegir la opción deseada, simplemente ponemos el número correspondiente en el cuadrado amarillo que aparece a la derecha de «Speaker Setup».

2.Speaker Pattern

Aquí nos permite seleccionar la directividad de nuestros altavoces. Lo habitual será que elijamos la opción 1 (Omni), para considerar nuestros subgraves como fuentes omnidireccionales.

Si quisiésemos diseñar un arreglo de arco con dos filas de subgraves, de tal forma que la trasera estuviese por ejemplo haciendo un gradiente con la primera fila, podríamos seleccionar «Cardioid» para visualizar la cancelación trasera que generaría ese segundo arco.

3.Array Parameters

Lo siguiente que debemos hacer es seleccionar la separación de los subgraves entre si. Los arreglos End-fired y Gradiente deben de diseñarse para obtener una cancelación máxima en una frecuencia concreta. Esa frecuencia tendrá una longitud de onda igual a 4 veces la separación entre los subgraves (o lo que es lo mismo, separamos los subgraves 1/4 de la longitud de onda de la frecuencia del arreglo).

Es decir, si separamos los subgraves 1 metro entre ellos al hacer un End-fired, la frecuencia a la que tendremos la máxima cancelación será aquella que tenga una longitud de onda de 4 metros (1metro x 4). En este caso, 85Hz (obtenemos el dato de dividir la velocidad de propagación del sonido 340m/seg entre la longitud de onda que es 4 metros).

Para hacer arreglos de arco, Merlijn recomienda espaciar los subgraves hasta un máximo de 180º o 1/2 longitud de onda de la frecuencia de corte superior de los subgraves. No obstante, hasta 2/3 de longitud de onda de separación podría funcionar en este tipo de arreglos, aunque en ese punto estaríamos al borde del colapso lateral.

Si separamos demasiado los subgraves al hacer un arreglo en línea, se produce un colapso lateral, enviando mucha presión sonora a los extremos superior e inferior del arreglo.

4.Prediction Plane

El cuadro de Prediction Plane o plano de predicción nos permite ajustar las distancias de nuestro plano. Como el plano debe de ser cuadrado, sólo podemos modificar el eje horizontal X y automáticamente el eje vertical Y tomará el mismo valor.

prediction_plane

Con la opción Shift podemos desplazar el plano de predicción a lo largo del eje X e Y, y el parámetro freq nos permite ajustar qué frecuencia se muestra en el mapa de SPL.

Las opciones de normalización se refieren exclusivamente a cómo se muestra mapa de presión sonora (SPL). Si la desactivamos (poniendo un 0 en el recuadro naranja) nos muestra valores desde -42 hasta 0dB.

Con la opción 1 (speakers) el valor de SPL más alto se fija en 0dB (tal y como lo muestra Mapp XT)

Con la opción 2 (Mic 1) compara el nivel que llega al micro 1 con el 0dB menos la pérdida por la distancia.

Son, en definitiva, diferentes formas de ver la misma información. Veámoslo gráficamente:

normalizacion

Aunque parecen distintas predicciones, sólo varía el nivel de referencia. Realmente es la misma predicción.

5.Microphone Setup Selection

Una opción muy interesante de esta gran herramienta es que nos permite situar 7 micrófonos en el plano de predicción y ver cómo varía la respuesta en cada punto.

mic_setup

En este caso tenemos 4 opciones principales para situar nuestros micrófonos en el plano de predicción. La opción que aparece por defecto es un arco (Arc), en el que los micrófonos se distribuyen de forma equidistante en un arco a partir del punto 0,0. El ángulo del arco lo podemos ajustar con la celda FAR.

Si queremos analizar arreglos del tipo End-Fired o Gradiente (con cancelación en la parte trasera), tendríamos que seleccionar un ángulo de 180º para poder ver qué sucede tanto en la parte frontal como en la parte trasera.

También podemos situar los micrófonos con la opción Array. En este caso también se sitúan equidistantes pero ya no toman como punto de origen el punto 0,0, sino el origen del arreglo virtual. Tampoco tienen en cuenta el ángulo del campo FAR. Lo veremos más claro con la siguiente imagen:

Micros_en_arco_y_array

En la imagen de la izquierda tenemos los micros situados con la opción Arc, que toma como referencia el punto de origen 0,0. En la derecha hemos seleccionado la opción Array, que toma como punto de referencia el origen del array.

Las dos opciones que nos quedan en esta sección son «Edge» y «Exponential 72º».

En Edge los micrófonos se distribuyen de forma equidistante desde el centro del array hasta el borde del mismo.

Con la opción Exponential 72º los micrófonos se sitúan a intervalos fijos para ilustrar el comportamiento de un arreglo en línea según Harry F. Olson.

Veámoslo en esta imagen:

edge_exponential

A la izquierda la configuración de micrófonos con la opción «Edge» y a la derecha con la opción «Exponential 72º»

Hay que tener en cuenta que el micrófono 1 es siempre el que está más cerca del centro y el micrófono 7 el que está más alejado.

Justo debajo tenemos la opción Global Radius (FOH), que es un ajuste global para toda la hoja de Excel y nos indica a partir de la cual situamos los micrófonos, y obtenemos los datos de SPL y diagramas polares.

Se recomienda utilizar la distancia de la posición del control de sonido (FOH) o la mitad del espacio a cubrir en el evento.


Llegados a este punto, creo que ya he dado demasiada información para un solo artículo. La herramienta Subwoofer Array Designer es muy extensa, así que tenéis una continuación de la explicación en este otro artículo: S.A.D. (Subwoofer Array Designer) explicado a fondo (parte 2)

Si os ha parecido interesante, agradecería un comentario o que compartáis el artículo con personas a las que les pueda interesar 🙂