El line array, todo lo que siempre quisiste saber contado en un libro

Hoy os voy a hablar de una novedad editorial muy interesante dentro de las publicaciones en español del mundo del sonido profesional.

Se trata del libro “El Line Array”, de José Martí Faus, publicado a través de la plataforma para escritores independientes de Amazon (CreateSpace Independent Publishing Platform).

La verdad es que me he quedado impresionado con el trabajo que ha desarrollado José Martí para la elaboración de este libro sobre los sistemas de line array, y os voy a contar por qué.

Un libro autoeditado muy profesional

Lo primero que me llamó la atención del libro cuando me enteré de su existencia es que se trataba de un volumen de 372 páginas totalmente autoeditado. Eso, en un primer momento, puede generar cierta desconfianza, básicamente porque cualquiera puede hoy en día publicar un libro a través de Amazon, y en ese caso no hay detrás una editorial convencional que supervise o aplique unos estándares mínimos de calidad.

Mis experiencias anteriores con libros autopublicados en Amazon he de reconocer que no han sido del todo satisfactorias (he comprado libros de este tipo con un nivel de calidad en ocasiones muy bajo), pero en este caso creo que hay que quitarse el sombrero ante el trabajo desarrollado por José Martí. Un contenido excelente, con ilustraciones muy explicativas y perfectamente maquetado.

Además, hay una ventaja muy importante a la hora de publicar un libro con esta plataforma: Como el libro se imprime a demanda, el autor puede revisar y modificar el libro en cualquier momento, corrigiendo erratas o añadiendo nuevos contenidos. Es cierto que no hay una editorial convencional detrás, pero el autor se ha preocupado de hacer llegar el libro a muchos profesionales del sector para recibir su feedback y sus correcciones, por lo que la revisión de este libro ha sido bastante exahustiva.

La enciclopedia del line array

Casi se podría haber llamado así el libro, pues en el fondo se trata de una especie de pequeña enciclopedia que recoge absolutamente todo lo que hay que saber sobre los line array hoy en día. Y la verdad es que el tema da para mucho.

El libro está dividido en 9 capítulos.

Los dos primeros son una introducción, absolutamente necesaria, antes de adentrarnos en el mundo de los line array. En el primero se trata el tema de la especificación de sistemas: qué objetivos debería cumplir nuestro sistema de sonido y aclara algunos conceptos básicos como la directividad y cobertura. En el segundo se tratan las características principales de los sistemas convencionales y sus posibles arreglos de cajas acústicas.

Una vez hecha esta introducción es cuando arrancamos con los sistemas de line array en profundidad. 7 capítulos dedicados en exclusiva a este tipo de sistemas, donde encontramos los siguientes: Fundamentos básicos, Instalación, Altura y orientación, Cobertura vertical, Line Arrays volados y estacados, Cableado y conexionado y Procesamiento.

Es de destacar el detalle en las explicaciones y la cantidad de fotos e imágenes que acompañan al texto. Desde luego, el autor ha hecho todo lo posible por conseguir que no queden dudas de ningún tipo en sus explicaciones. En la siguiente imagen podemos ver un detalle de alguna de las páginas del libro:

altura_orientacionDiagrama-de-conexiones-del-line-array

 

La verdad es que el libro está lleno de información muy interesante. Por poner un ejemplo, una cuestión que me ha llamado mucho la atención y me parece muy bien explicada en el libro es la diferencia entre sistemas activos y pasivos. El autor nos deja muy claro que el que un sistema sea activo o pasivo no significa que sea autoamplificado o no autoamplificado, sino que en los sistemas activos primero se aplica un crossover y después se amplifica (independientemente de dónde se haga la amplificación, dentro o fuera de la caja). En un sistema pasivo, los filtros de crossover están siempre después de la amplificación.

Train Your Ears

Canal de YouTube

Por si fuera poco, José ha creado un canal de Youtube donde está publicando muchísimos videos relacionados con el contenido del libro (y con otros aspectos del mundo del sonido) en el que nos explica un montón de conceptos. Para muestra el siguiente video, en el que tenemos la explicación de la diferencia entre un sistema activo y pasivo:

Conclusiones

En definitiva, estamos ante un libro de muchísima calidad. Se nota que el autor ha trabajado con mucho entusiasmo en él, así que si estáis interesados en profundizar en el mundo de los line array este ejemplar no debería faltar en vuestra biblioteca. Lo podéis comprar directamente en Amazon.

Una semana disfrutando de un sistema Maga Engineering en River Sound Festival

Un año más Producciones El Sótano se ha encargado de la sonorización e iluminación de la Carpa Aragoneses en River Sound Festival. Y la verdad que lo hemos disfrutado, principalmente gracias al sistema de sonido del fabricante Maga Engineering proporcionado por nuestros compañeros de Full Range.

Como desde que conocimos a esta marca y sus productos estamos encantados, hoy vamos a contaros un poco más en detalle en qué consisten estos equipos y la configuración que instalamos en River Sound Festival.



Maga Engineering, un fabricante muy serio.

Maga Engineering es una empresa que se dedica a fabricar equipos de sonido profesional desde su sede en Mota del Cuervo (Cuenca). En pocos años ha pasado a ser una marca muy apreciada por todos los técnicos que han tenido la suerte de escuchar sus equipos. Eso es algo que me llamó la atención desde el principio, pues suele ser complicado para las marcas menos conocidas hacerse un hueco en un mercado tan competitivo, y sin embargo, todas las referencias que habían llegado a mis oídos antes de poder escuchar los equipos de este fabricante eran siempre muy buenas.

En BiTAM 2014 me encontré de forma inesperada con un stand de Maga Engineering, donde Agus León y Antonio Cantarero me atendieron amablemente, me explicaron todos sus productos y resolvieron todas mis dudas. Lamentablemente el espacio con el que contaban era pequeño y me quedé con las ganas de escuchar sus sistemas de line array, pero me invitaron a acercarme a su sede en Mota del Cuervo para poder comprobar la calidad de sus equipos.

Así que un par de meses después, viajé a Mota del Cuervo con los compañeros de Full Range, que también querían escuchar estos equipos. Y volvimos con muy buenas sensaciones, a pesar de que personalmente creo que no se conoce un equipo hasta que no se prueba en una situación real en directo.

De cualquier forma, pudimos comprobar el cuidado con el que habían sido diseñados, la selección de los componentes, la calidad de los acabados y desde luego un sonido cuando menos impecable. Antonio Cantarero, su diseñador, es muy meticuloso con todos los detalles y hace su trabajo a conciencia. Si a eso le añades amplificación Lab Gruppen, la verdad es que el resultado es un sonido de altísima calidad.

Y la relación calidad/precio es excelente. Tanto, que los amigos de Full Range acabaron adquiriendo un sistema Maga 5 que hoy en día ofertan si estás interesado en alquilar un line array.

Sistema de sonido en River Sound Festival

Para River Sound Festival, montamos 12 cajas ME10V para el sistema principal, 2 cajas ME10V Wide como downfill y 6 subgraves ME218SND.

detalle_cajas

Detalle de las cajas, donde se ven los diferentes ángulos que se pueden aplicar y los pasadores magnéticos

La carpa medía 40×20 metros, pero con el escenario y los antiavalanchas se quedaba un espacio a cubrir de unos 28×20. Una de las limitaciones de trabajar en carpas de este tipo es la altura a la que se puede colgar el equipo. En este caso pudimos llegar a 5 metros. Nos habría gustado poder elevarlo un poco más, pero aún así fue suficiente.

Una de las curiosidades de las cajas ME10V es que las fabrican para ser situadas en L o en R. Es decir, hay unas cajas con el motor de agudos a la derecha (las que irían situadas en la izquierda) y otras cajas con el motor de agudos a la izquierda, de tal manera que se obtiene simetría acústica.

Las ME10V llevan un altavoz de 10″ y 2 motores de 0,8″, con una cobertura horizontal de 90º y una importante sensibilidad de de 1W@1m de 102dB . Su potencia admisible son 500W AES y se pueden angular de 0 a 9º en pasos de 1º. Las ME10V Wide cuentan con una cobertura horizontal de 120º, por lo que en este caso las situamos en la parte inferior del array.

Los subgraves ME218SDN llevan 2 altavoces de 18″ con una sensibilidad de 105dB y admitiendo 2.200W AES contínuos (hoy en día cada vez más fabricantes dan datos de potencia en watios AES, si queréis más información sobre la diferencia con los RMS podéis leer este artículo de Beyma).

Otra curiosidad del equipo es que los pasadores que se utilizan para sujetar y angular las cajas entre sí están imantados, de tal forma que se sujetan firmemente una vez que los insertas en los enganches e incluso puedes dejarlos colgando del equipo mientras se realiza la operación de montaje o desmontaje. De cualquier forma hay que tener cuidado, pues es fácil que los pasadores que no están sueltos durante el montaje se puedan enganchar a cualquier objeto metálico que haya por los alrededores (hay que tener especial cuidado con las cadenas de los motores).

Para amplificar todo esto utilizamos 3 etapas de potencia Lab Gruppen, concretamente una PLM20K44 y dos PLM12K44.

De la mesa de mezclas salían 4 envíos a traves de matrices: Una matriz stereo para alimentar el sistema principal, una matriz en mono con la suma de L+R para enviar a los subgraves (lo que permitía decidir la cantidad de subgrave que queríamos en función de si estábamos sonorizando un concierto o una sesión de DJs) y otra matriz mono L+R para el sistema de frontfill situado delante del escenario.



Sistema de predicción acústica y procesamiento

Si hay algo que no me gusta del sistema Maga Engineering es que utiliza como software de predicción la versión 1 de Ease Focus. No es un problema serio, ni mucho menos, y además me consta que lo cambiarán en un futuro. Sin embargo, la versión 1 de Ease Focus sólo funciona en Windows 7 o versiones anteriores.

Podemos convivir con ello, en mi caso tengo un Windows 7 en Parallels corriendo en mi MacBook Air, pero preferiría que trabajasen con Ease Focus 3 para poder hacer una partición real con BootCamp y arrancar directamente con Windows en lugar de tener que emularlo.

De cualquier forma, el Ease Focus 1 se comporta correctamente y nos permite hacer una predicción de la angulación y cobertura que nos va a dar el sistema.

ease_focus1

Ease Focus 1 funcionando en una emulación de Windows 7 de Paralells sobre Mac OS X Yosemite

Para procesar el equipo, trabajamos con los procesadores Lake que incluyen las etapas Lab Gruppen. A través de una red wifi y un ordenador podemos controlar todos los parámetros de ajuste, aunque Maga proporciona unos presets hechos a medida según las necesidades del usuario.

En este caso, para el sistema principal apenas tuvimos que aplicar una ecualización shelving para darle +3dB a partir de 8000Hz en el tiro largo, compensando de esta manera las pérdidas en alta frecuencia debido a la atenuación producida por el aire. De esta manera conseguimos igualar perfectamente la respuesta en frecuencia en toda la carpa del sistema principal.

ajustando_el_equipo

Ajustando el sistema: haciendo las mediciones y comprobaciones pertinentes

Arreglos de subgraves

Como ya os he dicho, para esta ocasión contábamos con 6 subgraves ME218SND. Con 6 subgraves ya se puede empezar a hacer arreglos interesantes, pero como siempre, de los modelos teóricos a los modelos reales hay un trecho.

La idea inicial era haber hecho una configuración L-C-R en gradiente, de tal manera que hubiese dos filas de subgraves, unos delante de otros. Los más próximos al escenario llevarían un delay y una inversión de polaridad para conseguir máxima cancelación en escenario y suma en la parte delantera. E incluso si el resultado no nos convencía y preferíamos tener más suma delante a costa de reducir el ancho de banda de la cancelación trasera, podíamos, sin mover ningún sub, cambiar el arreglo a un End-Fired simplemente cambiando los parámetros del procesador.

El problema fue que al llegar a la carpa pudimos comprobar que por cuestiones de espacio era imposible hacer el planteamiento inicial, así que finalmente acabamos haciendo un arreglo de arco electrónico, para conseguir abrir la cobertura a lo largo de toda la carpa.

etapas_lab_gruppen

Dos de las tres etapas Lab Gruppen utilizadas

Sensaciones sonoras

Una carpa no es el mejor sitio para disfrutar de un sistema de sonido (las reflexiones de las paredes y techo plástico generan un aumento significativo de frecuencias medias y altas), pero aún así es tremendamente fácil mezclar con este sistema de Maga Engineering.

El grave redondo y contundente de los subgraves, sumado con la definición casi hi-fi del sistema principal, hace muy sencillo plantear una mezcla de forma rápida y precisa. La respuesta a los transitorios del equipo es rápida y definida, lo que hace que ajustar compresores o escuchar definidamente las colas de las reverbs sea algo muy disfrutable.

En definitiva, estamos muy contentos con lo que nos ofrece este equipo y creo que es de justicia el reconocer las cosas bien hechas.

Enhorabuena a Maga Engineering, y si tenéis la posibilidad de probar estos equipos os recomiendo que lo hagáis. Ya nos contaréis qué os parecen…




S.A.D. (Subwoofer Array Designer) explicado a fondo (parte 2)

Y vamos con la segunda parte sobre la hoja de Excel para hacer arreglos de subgraves de Merlijn van Veen.

Nos habíamos quedado en la primera parte del artículo en la opción de Microphone Setup Selection, así que continuaremos el artículo desde allí.



Respuesta de los micrófonos (Level & Phase)

Habíamos visto anteriormente cómo configurar el posicionamiento de los micrófonos. Para que el calculador nos muestre su respuesta (de nivel y de fase relativa) tenemos un cuadro llamado “Level & Phase”

level_phaseDesde este menú podemos seleccionar los datos de qué micrófono se muestran en los recuadros Level (individual) y Phase (Individual).Para ello,  elegimos el número de micrófono del que queremos ver los datos en el cuadro “mic”.

Las opciones “normalize” y “tracking” afectan a la respuesta de fase mostrada en el cuadro “Phase individual”. Al normalizar el trazo elegido ajusta su respuesta al eje de 0º y muestra las diferencias temporales con el resto.

Level (Summed)

También tenemos un cuadro donde el calculador nos muestra el nivel sumadode todos los altavoces en cada posición de micro.

Para este gráfico tenemos un cuadro de control donde elegir qué posiciones queremos que nos muestre. También podemos normalizar el gráfico a la posición de micro que queramos. Si hacemos esto, lo que sucederá es que la gráfica que corresponda al micrófono normalizado estará en la posición de 0dB y el resto estará representado a partir de esta referencia.

level_summed

Arriba tenemos la gráfica normalizada (con las respuestas alrededor de 0dB) y abajo sin normalizar, con las respuestas a 12dB que es la suma que generan 4 subgraves.

Input & Output Data (Configuración de los altavoces)

En la ventana “Input Data” es donde seleccionamos el número de altavoces que va a tener nuestro arreglo, concretamente en el campo “Speakers”. El número máximo es 12.

Justo a la derecha del campo “Speakers” nos aparecerá el dato “block level”. Este campo nos indica la suma total que genera el número desubgraves que hayamos elegido, teniendo en cuenta que 1 subgrave toma el valor de referencia de 0dB, 2 subgraves son 6dB, 4 subgraves son 12dB, etc.

En esta misma tabla podemos configurar aspectos como el encendido o apagado de los subs, su posición, nivel, polaridad, rotación o delay.

En “Output Data” vemos los datos que se están tomando para mostrar la información de toda la hoja de Excel. Estos datos aparecen automáticamente tras configurar el “Input Data”.

input_output



Polar plot (Diagrama polar)

La hoja de Excel también nos permite visualizar en forma de diagrama polar la respuesta de nuestro arreglo de subgraves.

Es muy interesante, porque nos permite visualizar de manera simultánea cómo se va a comportar el arreglo a distintas frecuencias. Por ejemplo, podemos ver muchas diferencias entre un arreglo de gradiente y un arreglo end-fired en esta gráfica.

Teóricamente, el arreglo End-Fired produce la máxima suma en la parte delantera del arreglo, y nos va generar una respuesta cardioide en la frecuencia para la que hemos hecho el arreglo (separación de 1/4 de longitud de onda). Esta cancelación tiene un ancho de banda estrecho.

Sin embargo, el arreglo gradiente va a conseguir una cancelación en la parte trasera con aproximadamente un ancho de banda de 1 octava y media (mucha más cancelación que el End-Fired). Sin embargo, no va generar tanta suma en la parte frontal.

Esto, gráficamente, lo podemos visualizar muy fácil en el diagrama polar del S.A.D:

Con el diagrama polar, podemos comparar a simple vista el resultado teórico de un arreglo End-Fired y un arreglo de Gradiente.

Filters & Info (Filtros e Información)

Aunque los he dejado para el final, el calculador también permite añadir filtros HPF o LPF a nuestros subgraves. Tan sencillo como elegir las frecuencias del HPF o LPF y el número de orden del filtro. Si no queremos filtros, bastará con dejar los valores 0 en el HPF y 20000 en el LPF.

filtro_end_fired

Aquí he aplicado filtros LPF y HPF en un arreglo End-Fired. Además, en el gráfico se muestra el micro que está delante, a 0º del eje (en rojo) y el micrófono trasero a 180º. Por eso el trazo negro muestra una cancelación en 85Hz

Y hay otro cuadro a la izquierda de este y un poco más abajo que nos muestra información importante sobre nuestro arreglo. Se trata del cuadro Info, que se corresponde con los triángulos de colores que se pueden ver en la imagen anterior, y en el que de un vistazo podemos ver lo siguiente:

infoArray length: Longitud del arreglo en metros.

1st cancel: A qué frecuencia, en herzios, tendremos la primera cancelación.

Pref filters: Frecuencias de corte recomendadas para nuestros filtros.

Crit frequency: Frecuencia crítica a partir de la cual tenemos el mismo nivel en la parte delantera y en la trasera del arreglo.

BW /F2B: Ancho de banda del arreglo y diferencia máxima de nivel entre la parte delantera y la trasera.

Exportando los arreglos de subgraves a Mapp XT

Por último, Merlijn ha tenido el detalle de facilitar la importación de los arreglos de subgraves hechos con su calculador al programa de Meyer Sound Mapp XT.

Para ello, simplemente debemos elegir en el cuadro que aparece abajo a la izquierda el modelo de subgraves que queremos utilizar en Mapp y la orientación tanto de los altavoces como de los micrófonos. Le damos a exportar y automáticamente, en el directorio que queramos, nos generará un archivo *.xml que podremos abrir con Mapp XT.

exportar_mapp

La exportación a Mapp XT es realmente sencilla…

Y con esto doy por finalizada la explicación sobre este gran calculador.
Recuerda que puedes descargarlo desde la web de Merlijn van Veen de forma gratuita.



S.A.D. (Subwoofer Array Designer) explicado a fondo (parte 1)

En el artículo “3 hojas de excel que todo técnico de sonido debería tener”, una de las que nombrábamos era el calculador de arreglos de subgraves (Subwoofer Array Designer, S.A.D, de Merlijn van Veen). Se puede descargar de forma gratuita desde su web.

Se trata de una herramienta muy potente para diseñar arreglos de subgraves, ya sean arreglos en arco físico, en arco virtual, en gradiente o end-fired.

Vamos a tratar de explicar la herramienta por encima, para poder manejarnos con ella y empezar a diseñar arreglos y comprobar su respuesta.

Nada más abrir la hoja de Excel, tenemos todos estos campos a la vista:

Subwoofer Array Designer

Vista global del Subwoofer Array Designer

Veamos poco a poco qué significan estos campos.



1.Speaker Setup Selection

Arriba a la izquierda nos encontramos con el campo “Speaker setup selection”. En este campo es donde decidimos qué tipo de arreglo queremos hacer.

Merlijn nos deja elegir entre un arreglo en arco físico (Physical hor.array), un arco electrónico mediante la aplicación de delays (Delayed hor. array), un arreglo End-fired y un arreglo de gradiente.

Para los arcos, recomienda al menos 6 subgraves, aunque se puede hacer con menos. Para el End-fired entre 2 y 4 subgraves y para el gradiente únicamente dos subgraves. Estas limitaciones son en el plano horizontal, ya que siempre podríamos apilar subgraves en vertical encima del arreglo si necesitamos utilizar más cajas.

Para elegir la opción deseada, simplemente ponemos el número correspondiente en el cuadrado amarillo que aparece a la derecha de “Speaker Setup”.

2.Speaker Pattern

Aquí nos permite seleccionar la directividad de nuestros altavoces. Lo habitual será que elijamos la opción 1 (Omni), para considerar nuestros subgraves como fuentes omnidireccionales.

Si quisiésemos diseñar un arreglo de arco con dos filas de subgraves, de tal forma que la trasera estuviese por ejemplo haciendo un gradiente con la primera fila, podríamos seleccionar “Cardioid” para visualizar la cancelación trasera que generaría ese segundo arco.

3.Array Parameters

Lo siguiente que debemos hacer es seleccionar la separación de los subgraves entre si. Los arreglos End-fired y Gradiente deben de diseñarse para obtener una cancelación máxima en una frecuencia concreta. Esa frecuencia tendrá una longitud de onda igual a 4 veces la separación entre los subgraves (o lo que es lo mismo, separamos los subgraves 1/4 de la longitud de onda de la frecuencia del arreglo).

Es decir, si separamos los subgraves 1 metro entre ellos al hacer un End-fired, la frecuencia a la que tendremos la máxima cancelación será aquella que tenga una longitud de onda de 4 metros (1metro x 4). En este caso, 85Hz (obtenemos el dato de dividir la velocidad de propagación del sonido 340m/seg entre la longitud de onda que es 4 metros).

Para hacer arreglos de arco, Merlijn recomienda espaciar los subgraves hasta un máximo de 180º o 1/2 longitud de onda de la frecuencia de corte superior de los subgraves. No obstante, hasta 2/3 de longitud de onda de separación podría funcionar en este tipo de arreglos, aunque en ese punto estaríamos al borde del colapso lateral.

Si separamos demasiado los subgraves al hacer un arreglo en línea, se produce un colapso lateral, enviando mucha presión sonora a los extremos superior e inferior del arreglo.



4.Prediction Plane

El cuadro de Prediction Plane o plano de predicción nos permite ajustar las distancias de nuestro plano. Como el plano debe de ser cuadrado, sólo podemos modificar el eje horizontal X y automáticamente el eje vertical Y tomará el mismo valor.

prediction_plane

Con la opción Shift podemos desplazar el plano de predicción a lo largo del eje X e Y, y el parámetro freq nos permite ajustar qué frecuencia se muestra en el mapa de SPL.

Las opciones de normalización se refieren exclusivamente a cómo se muestra mapa de presión sonora (SPL). Si la desactivamos (poniendo un 0 en el recuadro naranja) nos muestra valores desde -42 hasta 0dB.

Con la opción 1 (speakers) el valor de SPL más alto se fija en 0dB (tal y como lo muestra Mapp XT)

Con la opción 2 (Mic 1) compara el nivel que llega al micro 1 con el 0dB menos la pérdida por la distancia.

Son, en definitiva, diferentes formas de ver la misma información. Veámoslo gráficamente:

normalizacion

Aunque parecen distintas predicciones, sólo varía el nivel de referencia. Realmente es la misma predicción.

 

5.Microphone Setup Selection

Una opción muy interesante de esta gran herramienta es que nos permite situar 7 micrófonos en el plano de predicción y ver cómo varía la respuesta en cada punto.

mic_setup

En este caso tenemos 4 opciones principales para situar nuestros micrófonos en el plano de predicción. La opción que aparece por defecto es un arco (Arc), en el que los micrófonos se distribuyen de forma equidistante en un arco a partir del punto 0,0. El ángulo del arco lo podemos ajustar con la celda FAR.

Si queremos analizar arreglos del tipo End-Fired o Gradiente (con cancelación en la parte trasera), tendríamos que seleccionar un ángulo de 180º para poder ver qué sucede tanto en la parte frontal como en la parte trasera.

También podemos situar los micrófonos con la opción Array. En este caso también se sitúan equidistantes pero ya no toman como punto de origen el punto 0,0, sino el origen del arreglo virtual. Tampoco tienen en cuenta el ángulo del campo FAR. Lo veremos más claro con la siguiente imagen:

Micros_en_arco_y_array

En la imagen de la izquierda tenemos los micros situados con la opción Arc, que toma como referencia el punto de origen 0,0. En la derecha hemos seleccionado la opción Array, que toma como punto de referencia el origen del array.

Las dos opciones que nos quedan en esta sección son “Edge” y “Exponential 72º”.

En Edge los micrófonos se distribuyen de forma equidistante desde el centro del array hasta el borde del mismo.

Con la opción Exponential 72º los micrófonos se sitúan a intervalos fijos para ilustrar el comportamiento de un arreglo en línea según Harry F. Olson.

Veámoslo en esta imagen:

edge_exponential

A la izquierda la configuración de micrófonos con la opción “Edge” y a la derecha con la opción “Exponential 72º”

Hay que tener en cuenta que el micrófono 1 es siempre el que está más cerca del centro y el micrófono 7 el que está más alejado.

Justo debajo tenemos la opción Global Radius (FOH), que es un ajuste global para toda la hoja de Excel y nos indica a partir de la cual situamos los micrófonos, y obtenemos los datos de SPL y diagramas polares.

Se recomienda utilizar la distancia de la posición del control de sonido (FOH) o la mitad del espacio a cubrir en el evento.


Llegados a este punto, creo que ya he dado demasiada información para un solo artículo. La herramienta Subwoofer Array Designer es muy extensa, así que seguiré detallando más opciones del calculador en futuros artículos.

Si os ha parecido interesante, agradecería un comentario o que compartáis el artículo con personas a las que les pueda interesar 🙂


El peligro de utilizar un amplificador de menos potencia que el altavoz

En muchas ocasiones he escuchado a personas comentar que han roto sus altavoces “a pesar de utilizar un amplificador de menos potencia que el altavoz”.  En cierta manera, es comprensible que esto genere ciertas dudas si no se tienen claros algunos conceptos: ¿cómo va un altavoz a romperse por un amplificador que genera menos potencia que la que soporta el altavoz?

Pues el gran culpable de este problema es la distorsión. Para entender esto de forma clara, analicemos la naturaleza de la música y parámetros como la amplificación y la distorsión.



La música

Para empezar, podemos afirmar que cuando reproducimos música no tenemos la misma energía en la parte alta que en la parte baja del espectro sonoro.

El oído humano responde mal a la baja frecuencia, y necesitamos mucha más energía para escuchar los graves que los agudos (esto se refleja en las famosas curvas isofónicas de Fletcher y Munson, y en las ponderaciones A, B y C de los sonómetros).

Si analizamos la respuesta en frecuencia de una canción en un analizador RTA, podremos ver que el contenido en alta frecuencia contiene, normalmente, entre 10 y 20dB menos que las frecuencias medias y graves.

Por tanto, incluso si trabajamos con un rango dinámico de 10dB para los picos de señal en la alta frecuencia (un valor bastante habitual, incluso puede ser más alto), el motor de agudos de cualquier caja acústica realmente estará soportando como mucho una décima parte de la potencia que tienen que aguantar las vías de medios y graves.

Esta distribución de la energía en el espectro sonoro es algo que juega a nuestro favor: Una caja acústica de 100W, tendrá un motor de agudos que tenga que trabajar, aproximadamente, con unos 10W. Si el fabricante utiliza un tweeter capaz de aguantar 20W (es habitual sobredimensionar la resistencia de estos componentes), entonces tenemos un factor de seguridad muy grande en la alta frecuencia. Si el componente tiene que trabajar en condiciones normales con 10W y aguanta 20W, en principio no deberíamos tener ningún problema.

Las capacidades de los componentes de una caja acústica están diseñadas según la distribución natural de la energía de la música.

En este gráfico podemos observar la distribución de la energía típica de la música: Una caída de 6dB/octava a partir de aproximadamente 1kHz, llegando a -20dB en 10kHz.

Fuente: http://sound.whsites.net/articles/fadb.htm

La amplificación

Pasamos ahora al tema de la amplificación. Lo primero que deberíamos tener en cuenta es que las especificaciones de la potencia de salida de un amplificador que aparece en sus especificaciones técnicas no es un valor absoluto. Y con esto quiero decir que, en ocasiones, los amplificadores pueden dar más potencia de la que dicen sus especificaciones (eso sí, a costa de generar mucha distorsión armónica).

Normalmente, los fabricantes nos dan el dato de la potencia de salida RMS a un nivel concreto de distorsión THD (normalmente muy bajo). Pero si el usuario del amplificador envía más señal de la cuenta, generando distorsión, la potencia de salida del amplificador puede aumentar por encima de la especificación dada por el fabricante.

Por ejemplo, un amplificador con una potencia de salida de 500w RMS con una distorsión de 0.5%THD podría llegar a generar mediante sobresaturación 1000W de potencia de salida. Y probablemente, mucha de esa potencia extra generada por la distorsión estará en la zona de la alta frecuencia, como veremos a continuación.

Distorsión en alta frecuencia

La potencia extra que se genera al sobrecargar la entrada de un amplificador tiene, por tanto mucha distorsión armónica. Y esos armónicos son los que son realmente peligrosos para nuestros motores de agudos.

Partimos de la base de que la distorsión armónica genera señales que no estaban presentes en la señal original, y son múltiplos superiores a la señal original.

Para situarnos en esto, veamos una captura de pantalla de la distorsión armónica generada por un tono de 1kHZ, tanto en escala logarítmica como en escala lineal:

Distorsión armónica a partir de un tono puro de 1kHz, en escala logarítmica

Distorsión armónica generada a partir de un tono de 1kHz, esta vez representada en escala lineal

Podemos apreciar como la distorsión generada al distorsionar la entrada de la interface con un tono puro genera distorsión armónica en frecuencias superiores al tono original, aumentando de forma significativa el nivel de energía en agudos.

Pero, ¿qué sucede cuando la señal que distorsiona el amplificador no es un tono puro, sino una señal de rango completo (una canción, por ejemplo)?

Vamos a verlo en el analizador:

En azul, la señal de música sin distorsionar. En rosa, la señal distorsionada. Vemos como aumenta la alta frecuencia en la señal distorsionada.

 

En escala lineal podemos apreciar mejor la diferencia: Tenemos unos 16dB de diferencia en la parte alta del espectro.

Como esta distorsión se genera siempre en múltiplos superiores, el motor de agudos de una caja acústica es el que soporta siempre la mayor cantidad de distorsión cuando se produce, aunque la señal en principio no tenga gran contenido de alta frecuencia.

Un contrabajo, por ejemplo, no tiene mucha señal de alta frecuencia. Pero si esa señal del contrabajo distorsiona la entrada del amplificador, generará distorsión armónica de alta frecuencia. Veámoslo en este video:





Ondas, factor cresta, potencia pico y potencia eficaz.

Si visualizamos las ondas generadas mediante un osciloscopio, podemos entender mejor lo que sucede.

Si introducimos en el osciloscopio una onda senoidal de un tono puro,veremos que en la pantalla sus extremos superior e inferior se muestran con los contornos normalmente redondeados (La típica onda senoidal, vamos).

 Pero cuando un amplificador es saturado, los contornos de la onda se recortan, generando una onda cuadrada en la que la potencia RMS se aproxima a la potencia de pico. Y cuando esto sucede, el amplificador puede enviar hasta el doble de su nivel de salida nominal al motor de agudos, que puede no ser capaz de manejar semejante potencia. Esta es la causa más común de fallo en los motores de agudos.

Onda senoidal y onda senoidal recortada. Fuente: http://www.hispamotor.net

Sin embargo, si utilizamos un amplificador de mayor potencia,  podrá generar los niveles de potencia requeridos sin producir ese recorte, permitiendo que el sistema de altavoces reciba la señal amplificada con una distribución normal de los niveles de energía. En estas condiciones, aunque aumente la potencia, el daño al motor de agudos es muy improbable (recordemos que están diseñados con un factor de seguridad importante).

Una cuestión importante para entender esto es el factor cresta. El factor cresta es el cociente entre el valor de pico de la señal y su valor promedio o RMS.

Los fabricantes de amplificadores utilizan normalmente para medir la potencia de sus amplificadores tonos puros o barridos de ondas, y estas señales tienen un factor cresta de 3dB. Eso significa que la potencia de pico del amplificador (la máxima potencia que puede soportar el amplificador sin averiarse durante un periodo de tiempo corto) es el doble que la potencia eficaz (potencia que el amplificador es capaz de desarrollar durante largos periodos de tiempo sobre una determinada carga nominal).

Por tanto, los fabricantes utilizan señales con 3dB de factor cresta para darnos sus especificaciones. Sin embargo, nosotros, en el mundo del sonido directo, normalmente vamos a trabajar con música con un factor cresta de entre 15 y 20 dB.

Si con un tono puro con factor cresta de 3dB el amplificador genera 1000W de potencia eficaz, con una señal con un factor cresta de 20dB el mismo amplificador genera una potencia eficaz de 20W, por lo que queda claro que tiene bastante sentido el sobredimensionar en cierta medida los amplificadores respecto a los altavoces.

Nota: Es importante advertir la diferencia entre música en directo y música grabada y masterizada. La música comercial de hoy en día ha llegado a límites de compresión absurdos, y su factor de cresta puede llegar a estar en algunos casos extremos cerca de los 3dB de la onda senoidal.

Consejos de protección

Llegados a este punto, podemos concluir con algunos consejos para proteger nuestros sistemas:

-Evitar la distorsión a toda costa: Es, sin duda, lo más peligroso para nuestros altavoces. No hay nada como mantener una buena estructura de ganancia y tener nuestros niveles bajo control. Por algo llevan medidores todos los amplificadores serios.

-Sobredimensionar (con mesura) nuestros amplificadores: Si vamos a trabajar con señales con dinámica (y por tanto factor cresta más o menos grande) es conveniente que los amplificadores generen más potencia que la que admiten los altavoces. Una proporción óptima (aunque podríamos debatir a cerca de esto) podría ser un amplificador que genere entre un 50% y un 75% más de la potencia eficaz del altavoz.

-Utilizar la limitación: Es interesante tratar de proteger nuestros sistemas para evitar problemas y evitar forzar los altavoces. Para hacer un ajuste adecuado de la limitación, os recomiendo esta hoja de excel de limitación creada por Gerard Mancebo, de VM Acoustical, que ya comentamos hace tiempo en otro artículo.  Con esta herramienta, es muy fácil calcular los parámetros adecuados para nuestro limitador.

Evitar hacer conexiones o desconexiones con el amplificador encendido: Hacer esto puede generar señales de pico momentáneas que pueden dañar las bobinas de los altavoces.

Y esto ha sido todo por hoy. Si os aparecido interesante os agradecería que compartiéseis el artículo o dejaseis algún comentario 🙂

 
Train Your Ears

Entendiendo conceptos básicos de los analizadores FFT

Hoy en día los analizadores FFT son una herramienta muy habitual en cualquier sonorización en directo. Es muy frecuente utilizar Smaart, SATLive o programas similares para realizar funciones de transferencia, análisis RTA, mediciones de SPL…

Sin embargo, no siempre se tienen muy claros los ajustes de los parámetros que nos dan todos estos programas basados en FFT. Así que en este artículo vamos a tratar de profundizar en los parámetros que afectan a la FFT o transformada rápida de FFT.



Introducción a la FFT

El origen de la FFT es la transformada discreta de Fourier (DTF), que es una transformada matemática que nos permite convertir señales del dominio de la frecuencia al dominio del tiempo, y viceversa.

Los programas de análisis de audio como Smaart o SATLive utilizan una versión de la DTF llamada FFT (Fast Fourier Transform). El algoritmo de la FFT fue desarrollado por los matemáticos estadounidenses J.W.Cooley y J.W.Tukey en 1965 y podríamos decir que es una versión de la DTF optimizada para facilitar el cálculo computacional.

FFT es el algoritmo matemático que permite a un analizador transformar una señal de audio y mostrarnos su contenido frecuencial.


Tamaño de FFT

Ok, ya sabemos qué es la FFT. Y uno de los aspectos fundamentales a la hora de trabajar con ella en analizadores es el tamaño de la misma.

Podríamos definir de manera simple el tamaño de la FFT como el número de datos que el analizador toma en cada medición.

El tamaño de la FFT, junto con la frecuencia de muestreo que utilice el analizador, nos va a dar dos datos fundamentales para entender la información que nos va a mostrar el software de medición: La constante de tiempo y la frecuencia de resolución.


Constante de tiempo (TC)

La constante de tiempo es simplemente el tiempo que se tarda en registrar muestras suficientes para una FFT de un tamaño concreto, a una velocidad de muestreo concreta.

Las constantes de tiempo más grandes nos proporcionan una resolución en frecuencia más detallada (normalmente demasiado detallada en alta frecuencia), pero a cambio de una resolución temporal menos detallada.

En cierta forma actúa de forma similar al obturador de una cámara fotográfica: Sólo vamos a poder capturar o analizar las frecuencias que hayan dado un ciclo completo dentro de la constante de tiempo. 

Veamos un ejemplo concreto: Tenemos un analizador con un tamaño de FFT de 128 samples, y una frecuencia de muestreo de 48.000Hz. Su constante de tiempo la obtendremos al dividir la FFT entre la frecuencia de muestreo (TC=FFT/FM; TC=128/48000=2,67 milisegundos). Por tanto, en analizador nos muestra información, en este caso, cada 2,67 milisegundos (muy rápido).

Si tuviésemos una FFT de 32k con una frecuencia de muestreo de 48.000Hz, la constante de tiempo sería de 682 milisegundos (lenta).


Frecuencia de resolución

La frecuencia de resolución nos indica a partir de qué frecuencia el analizador nos va a mostrar datos, y también cada cuanto va a tomar muestras.

Pongamos un ejemplo: La frecuencia de resolución se puede calcular dividiendo la frecuencia de muestreo entre el tamaño de la FFT (FR=FM/FTT).

Si tenemos una FFT de 128, la frecuencia de resolución será 375Hz (48000/128). Por tanto, el analizador no mostrará nada por debajo de 375Hz.

Y si calculamos el periodo de 375Hz (T=1/f) volvemos al dato de la constante de tiempo que habíamos obtenido anteriormente (2,67mseg).

Por tanto, todo coincide: Un analizador con un tamaño de FFT de 128 no va a darnos información por debajo de 375Hz (no hay información en baja frecuencia) y va a tener una respuesta temporal de 2,67mseg (rápida).


¿Qué sucede si ampliamos el tamaño de la FFT?

Podríamos pensar que si queremos tener una mejor frecuencia de resolución, será tan sencillo como ampliar el tamaño de la FFT.

Pero claro, una cuestión fundamental cuando trabajamos con analizadores FFT es la relación inversa entre la resolución temporal y la frecuencia de resolución: Cuanto mejor es una de las dos variables, peor es la otra.

Veamos qué sucede si utilizamos una FFT de 32k (32768 samples) con una frecuencia de muestreo de 48.000

Frecuencia de resolución=48000/32768=1,46Hz

Ahora el analizador nos muestra información a partir de 1,46Hz y tomará muestras cada 1,46Hz. Genial. Tendremos información a, por ejemplo, 80Hz, 81,46Hz, 82,92Hz, 84,38Hz… esta resolución, a baja frecuencia, desde luego que es interesante.

¿Y qué pasa en alta frecuencia? Pues que por ejemplo tendremos información a 10.000Hz, 10.001,46Hz, 10.002,92Hz, 10.004,38Hz… una resolución excesiva en alta frecuencia.

Tamaños de FFT en analizadores FFT

Aquí vemos mediciones de espectro en Smaart 8 con diferentes tamaños de FFT. A mayor FFT, más frecuencia de resolución. La medición la hice con ruido rosa aleatorio.

¿Y qué sucede con la constante de tiempo?

TC=32768/480000=682mseg

Ha empeorado notablemente la constante de tiempo. Si antes era de 2,67mseg (rápida), ahora es de 682mseg. ¿Y qué implica esto? Si la señal es constante, como por ejemplo puede ser el ruido rosa, no hay problema. Pero si la señal es fluctuante, el resultado cambia.

Imagina una batería acústica tocando un ritmo de bombo y caja muy rápido. Con una constante de tiempo rápida, veremos en el analizador claramente el golpe de bombo y el golpe de caja. Pero si la constante es lenta, veremos reflejado en el analizador el golpe de bombo y caja juntos, de tal manera que no podremos diferenciarlos entre ellos.

Vamos a verlo más claro con este video que he preparado:

O también podemos entenderlo viendo estas imágenes de Fedele de Marco hechas con el espectógrafo de Smaart:

En la imagen anterior vemos claramente que con FFT pequeñas no tenemos resolución en la parte baja del espectro, y tenemos una constante de tiempo rápida. Y lo contrario con FFT grandes, junto a la gran resolución en alta frecuencia.


¿Qué tamaño de FFT es correcto para hacer mediciones de análisis de espectro?

Bueno, pues como hemos depende de lo que queramos ver (resolución vs. rapidez). Pero en general, 16k me parece un tamaño de FFT válido para muchas situaciones. Eso sí, siempre que apliquemos un “banding” de 1/24 o 1/48 de octava, que además de permitirnos relacionar mejor lo que escuchamos con lo que vemos en el analizador, también elimina el problema el exceso de resolución en alta frecuencia.




Multi-Time Window (MTW) en Smaart

Ahora que ya conocemos cómo funciona la FFT, podemos aprovechar para explicar la función Multi-Time Window (MTW) en la función de transferencia de Smaart.

Las funciones de transferencia exigen por lo general una potencia de cálculo importante, por lo que la gente de Rational Acoustics decidió buscar una solución para sus analizadores FFT que permitiese un mejor rendimiento en las funciones de transferencia y eliminase el problema del exceso de resolución en alta frecuencia.

Básicamente, el MTW consiste en utilizar de forma simultánea diferentes tamaños de FFT para distintas partes del espectro a analizar.

En baja frecuencia queremos tener una buena resolución, por lo que el tamaño de la FFT será más o menos grande. Pero en alta frecuencia, podemos trabajar con tamaños de FFT mucho menores, y además mejoramos la velocidad de respuesta y el exceso de resolución.

En la siguiente gráfica podemos ver las diferencias entre una respuesta basada en MTW y la misma con una FFT de 16k:

Multi-Time Window vs. FFT 16k

MTW presenta buena resolución en baja frecuencia y elimina el exceso de resolución en alta frecuencia. Fuente: rationalacoustics.com

En la gráfica verde, con MTW vemos como tenemos una buena resolución tanto en baja frecuencia como en alta.

En la gráfica rosa, con una FFT de 16k, tenemos una resolución menor en baja frecuencia y una resolución excesiva en alta frecuencia.

Por tanto, la solución es muy buena, así que normalmente deberíamos tener seleccionado siempre en la opción FFT de la función de transferencia el modo Multi-Time Window (MTW).

Y hasta aquí por hoy, espero que esto os haya servido para entender mejor estos conceptos básicos de los analizadores FFT. Si queréis seguir profundizando en los analizadores FFT, os recomiendo la guía de Smaart v8, ya que contiene mucha información para entender muchos más aspectos de estos analizadores (eso sí, está en inglés).

Agradezco, como siempre, los comentarios si este artículo os ha sido útil 🙂

 

Curso de Diseño y optimización de sistemas de sonido en Zaragoza, por Pepe Ferrer

Hoy no tenemos un nuevo artículo, pero escribo para contaros que los días 3, 4 y 5 de abril, Producciones El Sótano tiene el placer de coordinar un nuevo curso de Diseño y optimización de sistemas de sonido, impartido por Pepe Ferrer en Zaragoza.

Para los que no lo conozcáis,  Pepe Ferrer es un ingeniero de sonido con una larga trayectoria en el ámbito profesional, especializado en el diseño y ajuste de sistemas de sonorización.
Lleva ya unos cuantos años formando a técnicos de sonido mediante sus excelentes cursos de diseño de sistemas a través de su empresa Educasound, tanto nivel nacional e internacional.

En este caso, el curso que se celebrará la primera semana de abril es el de Diseño y optimización de ajustes de sistemas de sonido. Es el curso más avanzado que imparte Pepe Ferrer, y es un curso en el que se trata de llevar a la práctica, en una situación real, el diseño y la optimización de un sistema de sonido completo (incluyendo subsistemas).

Como es un curso eminentemente práctico, se celebrará en el Auditorio Arcón de la localidad de Alagón (Zaragoza), donde contaremos con el equipo necesario para realizar todo tipo de pruebas, ajustes y mediciones.

El precio del curso, por los tres días (24 horas, a razón de 8 horas por día) es de 300€.

Os podéis inscribir a través de la web de Educasound: http://educasound.com/cursos/diseno-y-optimizacion-de-sistemas-de-sonido/

El año pasado ya pudimos disfrutar en Zaragoza de los otros dos cursos de Pepe, os dejamos unas fotos de los anteriores cursos, y un video muy interesante:

En este video, a partir del minuto 49:24, Pepe Ferrer explica algunas cuestiones relativas a su trabajo diseñando y ajustando sistemas de sonido.

Introducción a Mapp XT (parte 2)

Aquí va la segunda parte de la introducción al software de predicción acústica Mapp XT. Si en el artículo anterior explicamos la descarga y registro, el plano de predicción y el dibujo o importación de ayudas arquitectónicas, en este artículo empezaremos a hacer predicciones acústicas.

Para ello, vamos a comenzar insertando altavoces en el plano de predicción de Mapp XT.



1.Inserción de altavoces.

Insertar cualquier altavoz en Mapp XT es muy sencillo. Haciendo click con el botón derecho del ratón se despliega un menú con múltiples opciones.

Las 5 primeras corresponden a cinco posibilidades distintas para insertar equipos en el plano de predicción:

-Insert flown loudspeaker system: Se utiliza para insertar un sistema volado.-Insert ground stacked loudspeaker system: Para insertar un sistema stackado o apilado en el suelo.

Insert horizontal loudspeaker system: Esta opción nos permite insertar un arreglo de cajas horizontal.

Insert gradient flown subwoofer array: Para insertar un arreglo de subgraves volados en gradiente.

Insert individual loudspeaker: Si queremos insertar una caja suelta, utilizaremos esta opción.

 

Menú desplegable al hacer click con el botón derecho del ratón en el plano de predicción

De momento, vamos a insertar un altavoz individual seleccionando la quinta opción. Aparecerá inmediatamente un cuadro con las opciones que tenemos a la hora de insertar la caja, en el que podemos distinguir varias cosas:

Cuadro que aparece al insertar cualquier altavoz.

Os explico brevemente para qué son todas estas opciones, porque son fundamentales para la configuración de altavoces.

En la fila superior aparecen las siguientes opciones:

Loudspeaker Label: Para nombrar nuestro altavoz. Podemos llamarlo “Frontfill 1”, “PA Left”, “Outfill R”… lo que queráis, siempre que nos ayude a identificarlo inequívocamente.

Center Line: Para que en el plano de predicción se muestre una línea indicando hacia dónde apunta el altavoz. Para que se muestre, además de tenerlo en “On”, deberéis tener activado en el menú “View” la opción “Center Line”.

Solo: Si activamos esta opción en uno o varios altavoces, cuando hagamos una predicción sólo nos mostrará los resultados de los altavoces que tienen esta opción activada.

Layer: En Mapp XT también podemos trabajar por capas, de forma similar a como se hace por ejemplo en Photoshop. Desde este menú seleccionamos en qué capa se encuentra el altavoz. Por defecto se utiliza el Layer 0, pero podemos crear más capas desde Settings>Layer Management.

Addr: Se corresponde con el número de procesador al que queremos asignar el altavoz. En Mapp XT utilizamos los procesadores Galileo para hacer diferentes ajustes en los equipos. Tenemos 5 procesadores virtuales de 16 canales cada uno, y se numeran del 10 al 14. Luego en el procesador, como veremos más adelante, podremos ajustar ganancia, polaridad, retardo, encendido y apagado…

Ch: Canal del procesador al que queremos asignar el altavoz.

Processor Label: Nombre de la salida del procesador a la que hemos asignado el altavoz. Nos deja renombrarlo para poder escribir nombres más concretos, porque por defecto aparece la dirección y el canal de salida.

Justo debajo de todo esto, tenemos el menú para seleccionar el modelo de caja y su posición: Vertical, horizontal e incluso tenemos la posibilidad de invertirla respecto a su posición estándard.

Así sería una predicción de la cobertura vertical…

 

Y una predicción de la cobertura horizontal.

En el centro tenemos un recuadro etiquetado como “Reference Point Position”, que sirve para situar el altavoz en el plano de predicción de forma precisa. Podemos indicar la posición de dos formas: La primera opción se llama Front of Loudspeaker”, y las coordenadas que allí fijemos tomarán como eje central la parte delantera del altavoz. La otra opción es CDRM, que si no me equivoco, son las siglas de Center of Rotation During Measurement. Si damos la posición del altavoz seleccionando CDRM, utilizará el centro de la caja como punto de referencia.

Veamos dos ejemplos gráficos para entender claramente la diferencia:

Altavoz posicionado con CDRM en ejes Y=5, X=5

Altavoz posicionado con Front of Loudspeaker en ejes Y=5, X=5

También tenemos una opción llamada “Rotation about CDRM” que nos permite aplicar una angulación de la caja, medida en grados. El eje de angulación va desde -180º hasta 180º, con lo que podemos situar los altavoces orientados hacia cualquier punto.

2.Predicciones sencillas

Una vez que hemos insertado nuestro primer altavoz, hacer una predicción es tan sencillo como pulsar el botón “Predict” de arriba a la izquierda de la pantalla principal. Antes, podemos ajustar el rango de frecuencias que deseamos ver en la predicción.

Para ello, tenemos en primer lugar un menú desplegable para seleccionar el ancho de la predicción en octavas (1 octava, 1/3, 1/6, 1/12, 1/24) y posteriormente la banda de frecuencias y a continuación la frecuencia central.

Una vez hagamos la predicción pulsando el botón “Predict”, el programa se conectará a los servidores de Mapp XT y nos mostrará en la pantalla los resultados.

Debajo del plano de predicción, el programa, entre otras cosas, nos indica las frecuencias que está mostrando.

Predicción en 4kHz

Una cuestión curiosa es que en las predicciones, si insertamos un altavoz suelto, a su alrededor aparece una zona en la que el programa no muestra presión sonora. Esto, evidentemente, no quiere decir que el altavoz no suene en esa zona, sino que el programa no tiene datos para mostrar debido a que los datos que ha recopilado Meyer de sus altavoces empiezan a tomarse a partir de cierta distancia (aproximadamente 1 metro).

No es algo que tenga importancia, pues normalmente nuestro público siempre va a estar a más de 1 metro de cualquier caja.

Llegados a este punto, podemos hacer experimentos sencillos pero interesantes, como por ejemplo ver el filtro de peine que generan dos UPA-1P puestas una encima de otra:

Dos UPA-1P, una encima de la otra.

 

Predicción a 10kHz. Vemos las sumas y las cancelaciones producidas por la diferencia de tiempos de llegada.




3.Predicciones utilizando canales de procesador

Ahora que ya nos defendemos con predicciones simples, vamos a utilizar el procesador que tenemos disponible en Mapp XT para hacer, por ejemplo, algún arreglo de subgraves.

Imaginemos que queremos saber qué sucedería si situamos dos subgraves enfrentados entre si, y uno de ellos con la polaridad invertida.

Vamos a insertar dos subgraves, por ejemplo dos 600-HP. A uno de ellos le asignamos la salida 1 del procesador 10, y al otro, que enfrentaremos girándolo -180º, le asignamos la salida 2 del procesador 10.

Subgrave 1 en salida de procesador 1

Subgrave 2 en salida de procesador 2, girado -180º

Así quedan los subgraves enfrentados.

Ahora, vamos al procesador. Para ello en el menú “Settings” seleccionamos “Device configuration”.

En el canal 1 tenemos un subgrave y en el 2 otro, así que para este experimento vamos a invertir la polaridad del canal 2:

Ventana del procesador, con la polaridad del subgrave 2 invertida.

Hagamos ahora una predicción, en la banda de 63Hz, y veamos lo que sucede:

Predicción de dos subgraves enfrentados e invertidos de polaridad.

Desde luego, el resultado es poco utilizable, pues estamos cancelando muchísimo la baja frecuencia, pero como experimento para explicar cómo funciona el procesador creo que sirve.

Evidentemente, a la hora de diseñar arreglos, podemos agrupar altavoces en las diferentes salidas del procesador, podemos jugar con niveles, tiempos de retardo, inversiones de polaridad… Tenemos una herramienta increíble para hacer experimentos a golpe de ratón, sin tener que mover, cablear ni medir nada.

Hablando de medir, Mapp XT también cuenta con una excelente herramienta de medición donde podemos insertar micrófonos y ver respuestas de fase relativa tal como haríamos con un analizador como SIM, Smaart o cualquier otro. Pero eso es otra historia que será contada en otra ocasión…

Como siempre, recordad que vuestros comentarios son bienvenidos.

 

Introducción a Mapp XT (parte 1)

Llevo tiempo intentando preparar una breve introducción a Mapp XT, el software de predicción acústica de Meyer Sound. Como el programa es bastante extenso, no me queda más remedio que dividir esta introducción en varios artículos.

Para los que no lo conozcáis, Mapp XT es un programa que nos da la posibilidad de poder realizar predicciones acústicas de todo tipo desde nuestra casa, sin tener que cargar, mover y cablear los altavoces. Esto lo convierte en una herramienta brutal para todo tipo de experimentos (y por supuesto, para diseñar ajustes de los equipos Meyer para cualquier evento). En mi caso, lo utilizo mucho con fines didácticos en las clases de sonido.




1. Instalación y registro de Mapp XT

El software es gratuito (simplemente necesitamos registrarnos en la web de Meyer Sound) y tiene versión para Windows y para Mac OSX.
Lo primero que deberemos hacer, si no estamos registrados ni tenemos el programa instalado en nuestro sistema, es acceder a la siguiente URL: http://www.meyersound.com/product/mapp-xt/

Una vez allí, veremos toda la información que nos da Meyer sobre este programa, sus características principales… Dentro del menú superior, vamos a ir a la opción de “Register”

registro mapp xt

Míralo antes de escucharlo es un buen slogan para este programa…

A continuación nos aparecerá un formulario en el que deberemos introducir nuestros datos personales (ojo especialmente al nombre de usuario y la contraseña, pues son necesarios para hacer predicciones con Mapp). El sistema, una vez completado el formulario, nos enviará el enlace de descarga del programa a nuestro correo electrónico.

Una vez descargado e instalado el programa, ya lo podemos abrir.

2. Iniciando el programa: Login

Una vez abierto Mapp XT, lo primero que deberíamos ver es una imagen como esta:

Pantalla inicial de Mapp XT

Pantalla inicial de Mapp XT

Nota: Quizás la veáis con fondo negro, yo lo he puesto en blanco para que se vea más claro. Para cambiar el color de fondo no tenéis mas que ir al menú “Settings > Background Color”.

Fijaros que en la parte inferior de la pantalla aparece el siguiente mensaje: “Server Login Status: Offline Mode – Please Log In to the MAPP Server via the Settings Menu”.

Mapp XT realiza las predicciones conectándose a los servidores de Meyer Sound. Para ello, necesitamos dos cosas: la primera es tener una conexión a internet (no se pueden hacer predicciones offline) y la segunda es acreditarnos con nuestro nombre de usuario y contraseña.

Así que lo primero que deberíamos hacer es ir al menú “Settings” y seleccionar la penúltima opción “Log In to Mapp XT Server” para introducir nuestro usuario y contraseña. Una vez hecho esto, el mensaje de la parte inferior de la pantalla debería indicar “Server Login Status: Online Mode – System Ready for Predictions”, con lo que ya podríamos hacer predicciones.

3.Plano de predicción

A continuación, creo que es conveniente conocer nuestro plano de predicción (“Prediction Plane”), es decir, el espacio donde vamos a realizar nuestras predicciones.

Por defecto, deberíamos ver en la pantalla principal un rectángulo con un eje horizontal X y un eje vertical Y, que nos indican metros. Estas medidas se pueden variar para hacer el plano más grande o más pequeño en función del tamaño que queramos que tenga.

Nota: Si no os aparece en metros, o si queréis cambiar las unidades que utiliza el programa, lo podéis hacer desde el menú “Settings > Measurement Units”.

Hay que tener en cuenta que Mapp XT trabaja en 2D, es decir, que nuestras predicciones van a tener que ser hechas como vista de planta (desde arriba, tomando un eje como el largo y el otro como el ancho), o como sección (vista lateral, tomando un eje como el largo y otro como el alto). Para predicciones 3D, otro software tremendamente potente es SoundVision, de L’Acoustics, pero ya hablaremos de él en otra ocasión…

Estas medidas horizontales y verticales (o ancho y largo) son totalmente configurables. Podemos dar al espacio las dimensiones que queramos, e incluso podemos situar el punto 0,0 donde nos interese. Por ejemplo, es habitual situar el punto 0 horizontal en el borde del escenario, si hacemos una predicción vista desde el lado:

En esta predicción, el 0 del eje horizontal queda a ras de escenario

En esta predicción, el 0 del eje horizontal queda a ras de escenario

O si hacemos una predicción vista desde arriba, por ejemplo para posicionar subgraves, también podemos situar el 0 del eje horizontal en el borde del escenario y el 0 del eje vertical en el centro del espacio:

El 0 horizontal está en el borde del escenario y el eje 0 vertical en el centro de la sala.

El 0 horizontal está en el borde del escenario y el eje 0 vertical en el centro de la sala.

Para configurar las dimensiones de nuestro espacio, y dónde situamos las coordenadas deberemos ir a “Settings > Prediction Plane”. Una vez allí tendremos un cuadro en el que podremos configurar nuestro eje X, Y y dar las medidas deseadas a cada uno de los ejes.

Hay que tener en cuenta que para posicionar el punto 0 de cada eje podemos utilizar también valores negativos o positivos.

Ajustando las dimensiones...

Ajustando las dimensiones…

La parte de abajo de este mismo cuadro es también muy interesante. En ella podemos decidir si queremos que alguno de los límites de nuestro plano de predicción actúe como paredes, o bien si queremos hacer la predicción sin paredes, y por tanto sin ninguna superficie reflectante.

El funcionamiento es sencillo: Veremos un rectángulo en el que cada borde tiene un número, y a su derecha una tabla donde nos indica con números cada superficie. Seleccionando “Bypassed” no tenemos pared, si la activamos (“Enabled”) tenemos pared. Y por último, además, podemos elegir de qué tipo de material está hecha esa pared (tenemos diferentes opciones, cada una con distintos coeficientes de absorción).

Un detalle a tener en cuenta es que podemos distinguir entre el plano de predicción o prediction plane, que es el espacio que utilizamos para nuestras predicciones, y los límites del dibujo (o Drawing Limits), que no tienen por qué ser iguales. Esto quiere decir que en un momento concreto podemos ampliar o reducir de manera independiente estas dos opciones.

Es verdad que por defecto, los límites del dibujo son los mismos que los del plano de predicción. Pero si vamos a View > Drawing Limits, podemos desmarcar la opción “Auto-sync to prediction plane” y ajustar estas dos dimensiones (las del dibujo y las del plano de predicción) de forma independiente.

drawinglimits



4.Dibujar o importar elementos arquitectónicos

Ya tenemos delimitado nuestro plano de trabajo. Pero es posible que antes de empezar a posicionar altavoces queramos dibujar algo en nuestro plano. Puede ser un escenario, o un palco, o una platea con cierta inclinación.

En Mapp XT es muy sencillo situar este tipo de elementos en el plano. Eso sí, hay que tener en cuenta que no influyen en la predicción. Todas lo que dibujemos en el plano es transparente al sonido.

Para dibujar tenemos que seleccionar la herramienta adecuada. Como en casi todas las funciones de Mapp XT, existen distintas formas de hacerlo: Podemos ir al menú y seleccionar Tools > Architecture Tool.  También podemos hacer click en el botón derecho del ratón y seleccionar la herramienta Architecture Tool e incluso podemos acceder con comando+9 en Mac (en Windows no se si será el mismo atajo de teclado).

Una vez con la herramienta, tan solo tenemos que dibujar las líneas que necesitemos.

Dibujar ayudas visuales es sencillo con la herramienta adecuada.

Dibujar ayudas visuales es sencillo con la herramienta adecuada.

Si queremos modificar de forma precisa la posición o inclinación de uno de los trazos que hemos dibujado, podemos hacerlo de la siguiente forma: Seleccionamos la herramienta de seleccionar “Select Tool” y hacemos click en el trazo. Con botón derecho y el trazo seleccionado elegimos “Edit Architectural Visual Aid Properties.” Se nos abrirá un cuadro de menú en el que podremos definir con precisión donde queremos situar el trazo.

Desde este menú podemos posicionar un trazo con precisión en nuestro plano de predicción

Desde este menú podemos posicionar un trazo con precisión en nuestro plano de predicción

Finalmente, si tenemos un plano diseñado en AutoCAD, podemos también importarlo a Mapp XT. Con el archivo adecuado es tan sencillo como ir a File > Import > Import Graphics. Eso sí, hay que perder un poco de tiempo preparando los planos de forma adecuada en AutoCAD.

Plano de la sala Mozart del Auditorio de Zaragoza importado en Mapp XT

Plano de la sala Mozart del Auditorio de Zaragoza importado en Mapp XT

Y hasta aquí esta primera parte de introducción a Mapp XT, que espero que os sea de utilidad a los que estáis interesados en profundizar en este software. Ya se que todavía no hemos puesto ningún altavoz ni hemos hecho ninguna predicción, pero esta introducción al programa era necesaria.

Si te ha parecido interesante el artículo, agradecería comentarios, que compartieses el artículo, o que siguieses a Producciones El Sótano en Facebook o Google+ ¡Gracias!

Ya podéis consultar la segunda parte del artículo, donde empezamos a insertar altavoces y a trabajar con predicciones.

La respuesta de impulso, esa gran desconocida

Hace 10 o 15 años, una gráfica de fase relativa era algo insólito y muy poco conocido y entendido entre los técnicos de sonido.

Hoy en día las cosas han cambiado, y quien más, quien menos, tiene conocimientos básicos para realizar un ajuste entre subgraves y line arrays mediante una función de transferencia de un analizador FFT.

Sin embargo, la respuesta de impulso sigue siendo bastantes veces algo confuso para mucha gente. Se sabe que está ahí, que sirve para sincronizar nuestro analizador para poder realizar correctamente mediciones de doble canal, pero creo que en general es bastante desconocida.

Aunque el tema es complejo y daría para varios artículos, voy a intentar explicar brevemente qué es la respuesta de impulso…



¿Qué es una respuesta de impulso?

Una respuesta de impulso (IR) se puede definir como la respuesta en el dominio del tiempo (tiempo vs. amplitud) del sistema que estamos analizando bajo un estímulo sonoro de corta duración.

Esto quiere decir que nos va a mostrar información tanto de amplitud como de tiempo, nos va a mostrar qué sucede en el sistema a analizar durante el paso del tiempo.

Seguro que muchos, cuando entráis en un espacio donde vais a realizar una sonorización, dais una palmada para escuchar cómo se comporta el sonido en ese espacio. Pues bien, eso es un impulso (la palmada) y la respuesta al impulso (cómo se comporta la sala con ese estímulo).

Para obtener una respuesta de impulso necesitamos primero tener un impulso, un estímulo sonoro de corta duración.

Una palmada o una explosión de un globo podría ser un impulso, y por tanto lo podríamos utilizar para excitar el sistema que queremos medir.

El sistema a analizar puede ser desde un micrófono o un altavoz, a un dispositivo electrónico como un ecualizador. O incluso una habitación, o cómo se comporta una habitación con una determinada fuente sonora en ella.

Nosotros, para el artículo, vamos a centrarnos en esta última opción, el análisis acústico de un espacio.

Esto es una respuesta de impulso de un teatro. En el eje horizontal tenemos tiempo y en el eje vertical amplitud. De momento no nos dice gran cosa…

Esto es una respuesta de impulso de un teatro. En el eje horizontal tenemos tiempo y en el eje vertical amplitud. De momento no nos dice gran cosa…

Si hablamos de análisis acústico, podemos entender la respuesta de impulso como la “firma acústica” del sistema que analizamos, en el sentido de que cada elemento que midamos tendrá una respuesta de impulso distinta.

Pero… ¿qué información podemos obtener de un impulso si no se tiene en cuenta la frecuencia y tiene tan poca duración?

Aquí entra en juego la transformada de Fourier, que nos permite relacionar el dominio frecuencial con el dominio del tiempo.

 Ilustración conceptual de una medición de impulso acústica (fuente: Rational Acoustics)

Ilustración conceptual de una medición de impulso acústica (fuente: Rational Acoustics)

El sonido de la fuente de la imagen de arriba  (la explosión de un globo, es decir, un impulso) va a llegar a la posición de medición por diferentes caminos (y direferentes tiempos), tanto directos como reflejados. Vemos en rojo el camino directo, y en azul, verde y gris las diferentes reflexiones. . El sistema de medición nos mostrará la respuesta de impulso en una gráfica de tiempo y amplitud.

 Diseño esquemático sobre la obtención de la respuesta de impulso de una sala.

Diseño esquemático sobre la obtención de la respuesta de impulso de una sala.

Una respuesta de impulso pertenece al dominio temporal, pero se puede convertir al dominio frecuencial mediante la transformada de Fourier (y viceversa).

A partir de la Respuesta de Impulso se obtiene gran cantidad de información acerca de un sistema acústico, incluyendo los tiempos de llegada y contenido en frecuencia tanto del sonido directo como de las reflexiones.

También se puede obtener información del tiempo de reverberación, la relación señal-ruido e información sobre la inteligilibilidad y la respuesta en frecuencia general.

 

Elementos de la respuesta de impulso.

Una respuesta de impulso acústica se crea emitiendo sonido desde una fuente. El sonido directo llegará primero y con más nivel al punto de medición.

El sonido reflejado llegará más tarde por los múltiples rebotes, perdiendo energía debido a la absorción de aire y de las superficie con las que se encuentre a lo largo del camino, por lo que tendrá niveles cada vez más bajos.

La parte que nos interesa analizar abarca unos pocos segundos o incluso menos de un segundo en habitaciones pequeñas una acústica muy absorbente.

La llegada a nuestro sistema de medición del sonido directo y probablemente del sonido reflejado se podrá distinguir claramente en una gráfica de respuesta de impulso.

El sonido directo se verá en la gráfica de tiempo vs amplitud como una gran señal y las reflexiones posteriores llegarán después con menor nivel.

Veamos otra vez la respuesta de impulso que habíamos visto al inicio del artículo con un poco más de detalle:

impulso_teatro

El pico inicial nos indica la llegada del sonido directo, y los siguientes picos más pequeños indican la llegada de diferentes reflexiones, más tarde, al punto de medición.

Aunque dos habitaciones distintas van a tener respuestas de impulso diferentes, hay ciertos componentes comunes que probablemente podremos identificar cuando visualicemos las respuestas de impulso.
Estos elementos comunes son los siguientes:

  • Llegada de la señal directa.
  • Primera reverberación generada y su pendiente de caída.
  • Primeras reflexiones.
  • Ruido de fondo.

Hasta ahora habíamos visto la gráfica de la respuesta de impulso en modo lineal (tiempo en el eje horizontal y amplitud en el eje vertical). Pero si la visualizamos la respuesta de impulso en modo logarítimico tenemos mucha más información a simple vista.

La respuesta de impulso en modo logarítmico nos muestra la amplitud en decibelios y en el eje horizontal el tiempo, normalmente en milisegundos. Otra forma de visualización, en la que no voy a profundizar, pero que conviene saber que existe, es la llamada ETC (Envelope Time Curve), útil por ejemplo para sincronizarse con señales de baja frecuencia.

Pero no nos despistemos, veamos la respuesta de impulso logarítmica con un ejemplo gráfico para entenderlo mejor:

Respuesta de impulso visualizada en Smaart de forma logarítmica

Respuesta de impulso visualizada en Smaart de forma logarítmica

En la imagen anterior vemos los diferentes elementos que podemos deducir de la respuesta de impulso. Vamos a analizarlos un poco más a fondo para entenderlos mejor.

Tiempo de propagación:

Es el tiempo que tarda el sonido directo de la fuente en llegar a la posición de medición.
Dentro de este tiempo de propagación se incluye la latencia que pueda producir cualquier elemento digital que esté conectado a nuestra cadena de audio y el tiempo que tarda el sonido en viajar por el aire desde la fuente al punto de medición.

Llegada del sonido directo:

Dado que la distancia más corta entre dos puntos es siempre la línea más recta, lo primero que esperamos ver cuando analizamos una respuesta de impulso es la llegada del sonido directo de la fuente de sonido que estamos utilizando para estimular el sistema. Con este tiempo de llegada es con el que se sincroniza nuestro analizador FFT cuando buscamos el delay en la función de transferencia.

Primeras reflexiones:

Después de la llegada del sonido directo, las siguientes características más destacadas que tendemos a ver llegar son las primeras reflexiones. Estas primeras reflexiones son normalmente de primer orden. Esto quiere decir que el sonido sólo ha rebotado en una superficie antes de llegar al punto de medición.

Primera caída y reverberación:

Tras la llegada del sonido directo y las reflexiones de orden más bajo, el sonido en un espacio reverberante continuará rebotando por la habitación durante un tiempo, creando reflexiones cada vez de mayor orden y menor energía.

En cualquier posición de escucha, parte de esta energía reflejada se combinará de forma constructiva durante un relativamente corto período de tiempo, lo que dará como resultado una acumulación de sonido reverberante.

Está estandarizado que la caída de 10dB después de la llegada del sonido directo sea considerada la primera caída o early decay.

La caída de la reverberación se mide normalmente desde 5dB por debajo del nivel de sonido directo hasta el punto en el que el sonido cae 35dB (TR30). En el caso de que las condiciones de la medida no permitan tener una caída de 30dB (35-5), se puede realizar una medida con una caída de 20dB (RT20). Después, el software será capaz de calcular el RT60.

Ruido de fondo:

En la práctica siempre vamos a llegar a un punto en que nuestra medición del impulso no se pueda distinguir del ruido de fondo al quedar por debajo de este. Cuanto más alto sea el ruido de fondo, a mayor nivel tendremos que emitir nuestra señal de impulso para conseguir una buena respuesta de medición.

Y hasta aquí esta introducción a la respuesta de impulso. Espero que os haya sido de utilidad, y ya sabéis que se agradecen los comentarios o la difusión del artículo… 🙂